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We show how the dynamics of a recurrent network of compartmental model neurons can be formulat-
ed in terms of a set of coupled nonlinear Volterra integrodifferential equations in which the state of each
neuron is represented by a single scalar variable. The associated convolution kernels are determined by
the single neuron membrane potential response function, which can be calculated explicitly for arbitrary
dendritic tree topologies. Our integral equation approach provides a compact and analytically tractable
method for studying the effects of dendritic structure on network dynamics. We illustrate this by deriv-
ing conditions for the onset of oscillations in a compartmental model network that depend both on the
interneuron connection weights and on the internal dendritic structure of the individual neurons. It is
shown that it is possible for a symmetrically connected compartmental model network to oscillate.

PACS number(s): 87.10. +¢, 02.30.Ks

I. INTRODUCTION

Most neural network models consider a neuron to be a
point processor that transforms a linear weighted sum of
inputs into an output according to some nonlinear
threshold function without delays. On the other hand, it
is well known from neurophysiology that the passive
membrane properties of a neuron’s dendritic tree system
leads to a diffusive spread of activity throughout the tree
so that the neuron’s response depends on previous input
history (infinite delays) and the particular locations of the
stimulated synapses within the dendritic tree. Thus den-
dritic structure influences the temporal processing of
synaptic inputs. It is still poorly understood how this
feature contributes to the information processing capabil-
ities of real neurons.

A popular way of modeling the dendritic tree is to seg-
ment it into a set of compartments such that the spatial
variation of the membrane potential and other physical
quantities across each compartment is negligible [1].
Compartmental models can be described in terms of a set
of coupled ordinary differential equations. Since these
are particularly amenable to computer simulations, com-
partmental models form the basis of most numerical stud-
ies of the more realistic neuronal systems considered in
computational neuroscience [2]. Recently, a method for
calculating the response function of a compartmental
model neuron has been developed, which yields simple
analytical expressions that are applicable to trees of arbi-
trary topology and that have an explicit dependence on
important neurophysiological parameters [3]. These ex-
pressions have been used to study the response of a neu-
ron to time-varying inputs [4], as well as to analyze the
effects of synaptic background activity [5] and shunting
[6]. However, the mathematical analysis has tended to be
at the single neuron level.

In this paper, we extend our previous work by analyz-
ing the dynamics of a recurrent analogue neural network
consisting of identical compartmental model neurons.
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We show how the resulting set of ordinary differential
equations can be reduced to a much smaller set of Volter-
ra integrodifferential equations in which the state of each
neuron is represented by a single scalar variable, namely,
the somatic membrane potential; the dendritic potentials
are treated as auxiliary variables. The kernels of the Vol-
terra equations, which are of convolution type, are deter-
mined by the single neuron response function calculated
in Ref. [3]. Hence, our integral equation formulation
provides a compact and analytically tractable way of in-
corporating dendritic structure into recurrent neural net-
work models. (It should be noted that Poggio and Torre
[7] have also considered the representation of dendritic
structure in terms of integral equations, however, their
analysis is purely at the single neuron level and is con-
cerned with the effects of shunting.)

Each neuron in the compartmental model network is
effectively performing a temporal summation over all pre-
vious inputs to that neuron as expressed by the convolu-
tion integrals [4]. Thus, one can consider the network as
having continuously distributed delays. One well known
feature of delays it that they can lead to destabilization of
an equilibrium and the simultaneous creation of a stable
limit cycle via a supercritical Hopf bifurcation [8,9]. This
was studied previously by Marcus and Westervelt [10] in
the case of an analogue network with discrete delays. In
this paper, we derive conditions for the onset of oscilla-
tions in a compartmental model network. These depend
on both the interneuron connection weights and the
internal dendritic structure of the individual neurons.
We proceed by linearizing the Volterra integrodifferential
equations about an equilibrium and constructing the as-
sociated characteristic equation. This involves the La-
place transform of the single neuron response function,
which can be calculated explicitly for arbitrary dendritic
trees using the results of Bressloff and Taylor [3]. The
(local) stability of the equilibrium is then analyzed in
terms of the roots of the characteristic equation, and a
stability region in weight space established. However, as
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illustrated by Burton [11], linear stability analysis is itself
insufficient to guarantee the existence of solutions with
sustained oscillations; one must take into account the
nonlinearities. We achieve this here by adapting a ver-
sion of the Hopf bifurcation theorem due to Allwright
[12], which again makes explicit use of the single neuron
response function of Ref. [3]. In particular, we show how
a compartmental model network with symmetric connec-
tion weights can oscillate.

The organization of the paper is as follows. The in-
tegral equation approach to compartmental model neuro-
dynamics is presented in Sec. II. Some general results
concerning the dynamics of Volterra integrodifferential
equations are briefly described in Sec. III. These are then
used in the linear stability analysis of a compartmental
model network (Sec. IV). Finally, the Hopf bifurcation
theorem for the onset of oscillations in a compartmental
model network is developed in Sec. V.

II. COMPARTMENTAL MODEL

Consider a fully-connected network of identical com-
partmental model neurons labeled i=1,...,N. Each
neuron consists of a set of dendritic compartments cou-
pled to a single somatic compartment where the process
of action potential generation occurs. The complex to-
pology of the dendrites is specified by a simply connected
graph or tree I (i independent). Each node of the tree la-
beled a €T corresponds to a single dendritic compart-
ment over which the spatial variation of the membrane
potential and other physical quantities is negligible. The
passive membrane properties of the ath compartment are
represented in terms of an equivalent circuit consisting of
a membrane leakage resistor R, in parallel with a capaci-
tor C,. Each compartment a is joined to its immediate
neighbors B in the tree by the junctional resistors R ,g.
The dendritic system is coupled to an additional somatic
compartment by a single junctional resistor r from den-
dritic compartment a,EI’. The soma has membrane
leakage resistance R and capacitance C (the basic model
of a neuron is shown in Fig. 1). Let ¥;, be the membrane
potential of compartment a belonging to the ith neuron
of the network, and let U; be the corresponding potential
at the soma. Denote the synaptic weight of the connec-
tion from neuron j to the ath compartment of neuron i
by W;i. The associated synaptic input is taken to be of
the form Wjf(U;), where f is the output function of
each neuron. (Note that we are ignoring shunting terms,
see Sec. VI). We shall take f to be a smooth function of
the somatic potential that saturates at f =1, that is

f(U)=tanh(«U) , (2.1)

where « is a gain parameter. The output f (U) may be in-
terpreted as the short term average firing rate of a neu-
ron. Finally, W,-j f(Uj) is the synaptic input located at
the soma.

Under the above assumptions, an application of
Kirchoff’s law yields a set of ordinary differential equa-
tions
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where I;(t), T,(1) are external input currents. The sum-
mation over 8 in Eq. (2.2) is restricted to nearest dendri-
tic neighbors of a as indicated by the notation {B;a).
One is now faced with the task of analyzing the set of
N (M +1) coupled nonlinear equations, where M is the
number of dendritic compartments per neuron. This can
be quite formidable, especially when M is large. For ex-
ample, unlike the standard analog model [13], there is no
simple Liapunov function that can be constructed in or-
der to guarantee stability. However, one is really only
concerned with the somatic potentials U;(t) since these
determine the output of the network and are the source
of the nonlinear terms. In other words, the dendritic po-
tentials V,,(¢) can be viewed as auxiliary variables.
Therefore, we shall proceed by eliminating the auxiliary
variables V,,(t), which appear linearly in Egs. (2.2) and
(2.3), to obtain an integrodifferential equation for the N
remaining variables U;(¢).

Taking the U;-dependent terms on the right-hand side
of (2.2) as additional inputs, we first use a variations of
parameter formula to yield

Vil )= 3, Gog(t)V;50)
BET

t ’ Y
+ [ ar ﬁngaﬂ(t t')

X [I,-ﬁ(t’)+1’/‘0U,-(t')83,ao

+3 W.?f(Uj(t'))‘ , 2.4)
J
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where a factor of C, has been absorbed into I;,(¢) and
the matrix G(t) satisfies
) 8
Gop1)=[e U, Qup=——2+ 3 2E |
Ta (Bia) Tap

a,BET . (2.5

The membrane time constant 7, and junctional time con-
stant 7,5 are defined by

1 1 1 1 1

—=— | —+—=5,, + —_— |,

Ta Ca Ra ro % (B‘Ezl";a)RaB'

TaB:CaRaB . (2.6)
We also set

1 1 1 1

t=—at—, P9=—, ¥=—% . 2.7)
R & T, Ve

It is convenient at this stage to introduce an additional
simplification: each weight W is taken to have the prod-
uct form

Wi=Wiw, Jw,=1, (2.8)

a

which means that the relative spatial distribution of the
input from neuron j across the compartments of neuron i
is independent of i and j. If Eq. (2.4) with a=q is now
substituted into Eq. (2.3), we obtain N coupled nonlinear
Volterra integrodifferential equations for the U; of the
form

i

dt

=—8U,()+3 W, f(U;(1))
j

+f0'

Gt —t')3 W, f(U;(t")
J

+H(t—t")U(t') |dt' +F (1), (2.9
with the convolution kernels
H()=(967)G g0 (1) (2.10)
G(1)=7 3 wgG,p(1) , (2.11)
B
and the effective input (after absorbing € into 7;)
F(=T,(t)+7 3 G,5(1)V;50)
per
+9 [13 Goplt —tiglt")dt" . (2.12)

Oger

Equation (2.9) is the functional extension of the stan-
dard analogue model [13] to the case of neurons with
dendritic structure. Note that we recover the standard
model in the limit y,¥#—0 or r— o. All information
concerning the passive membrane properties and topolo-
gy of the dendrites is represented compactly in terms of
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the convolution kernels H(¢) and G (z), Egs. (2.10) and
(2.11). These, in turn, are given in terms of the functions
G ,5(t) defined in Eq. (2.5). We may identify G 4(7) as the
compartmental model response function, since G,4(t)
determines the membrane potential of dendritic compart-
ment a at time T in response to a unit impulse stimula-
tion of compartment 3 at time 7 —¢. The matrix Q of
Eq. (2.5) has real, negative, nondegenerate eigenvalues A,
reflecting the fact that the dendritic system is described
in terms of a passive RC circuit, which is a dissipative
system. Thus, one could determine G ,4(¢) by diagonaliz-
. . —tla, |

ing Q to obtain G,4(t)=3,coee . However, such an
approach is rather cumbersome, especially in the case of
many compartments, and does not lead to simple analyti-
cal expressions that are applicable to arbitrary trees and
that have an explicit dependence on system parameters.

Recently, Bressloff and Taylor [3] have developed an
alternative method for evaluating exp(¢Q), which does
lead to simple analytical expressions for the response
function G ,4(¢). Such results apply to trees of arbitrary
topology provided that each branch of the tree is uniform
and certain conditions are imposed on the membrane
properties of compartments at the branching nodes and
terminals of the tree. Under such assumptions, one can
show that e’Q=¢ "¢ ?*? where ¢ ! and ¥ ! are, respec-
tively, a global membrane time constant and a global
junctional time constant of the dendritic system, and the
matrix P generates paths along the tree I'. In particular,
modulo additional constant factors arising from the
boundary conditions at terminals and branching nodes,
[P™],p is equal to the number of possible paths on I" con-
sisting of m steps between the compartments a and S,
where a step is a single jump between neighboring com-
partments. Thus, the calculation of G ,4(¢) reduces to (i)
determining the sum over paths [P™],s and then (ii)
evaluating the infinite series 3, >o(t7)"[P™],5/m! ob-
tained by expanding e‘?® in powers of ¢. The first step
can be performed using results from the theory of ran-
dom walks along similar lines to Abbott et al. [14].

The simplest example, which forms the building block
for more complex topologies, is an infinite chain of identi-
cal dendritic compartments labeled a=0,+1,£2,... .
Under the uniformity conditions 7,=¢ ™!, 7,4=7 !, for
all a,B, the matrix Q of Eq. (2.5) reduces to
Qup= —€8,5+7P,g where P is the generator of paths
along the chain, P,g=8, g, ,+8,p_;. Using a standard
result from the theory of random walks, the number of
possible paths of m steps between nodes o and B is
Nola,B;m]=m!/[(m +|B—al/2)X|B—a|/2)!].  The
infinite series of step (ii) can then be summed explicitly
with the result that the response function of the chain,
denoted by Gﬁ,oﬁ’, is

G Y ()=e I 5_,(271), (2.13)
where I, is a modified Bessel function of integer order n.
In Ref. [3], this construction is generalized to the case of
arbitrary dendritic topologies. We simply quote the re-
sult here. Following Abbott, Farhi, and Gutmann [14],
we define a trip to be a path on the tree I' with certain re-
strictions: a trip from B to « starts from S in either direc-
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tion, but subsequent changes in direction can only occur
by reflections at branching nodes and terminals. Provid-
ed that certain uniformity conditions are satisfied at ter-
minal nodes and branching nodes of the tree, the
response function can be written in the general form

GapD=3 c,Geir 51) (2.14)
I

where the right-hand side involves a summation over all
possible trips p and L, is the length (total number of
steps) of a trip. The coefficients ¢, arise from additional
factors picked up at terminal and branching nodes, and
there are systematic rules for calculating these
coefficients [3]. Note that for complex topologies there is
an infinite number of possible trips so that we have an
infinite sum over u. However, since Gfg,)(t) is a rapidly
decreasing function of the separation |f—a/| along the
chain, the series can be truncated to include only a small
number of terms.

Note that in dealing with the infinite dendritic systems
described above, one must be careful that the sums over 8
in Eqgs. (2.11) and (2.12) are finite. This is ensured by the
conditions

since the response functions G ,g4(t) are bounded for all
a,B. For future reference, we also note that in the case of
a homogeneous network, Eq. (2.9) reduces to a single sca-
lar equation. Homogeneity is obtained by setting
I,=1,1,,=I, and W;=W/N,W,,=W/N. We also im-
pose the initial condition V;5(0)= V(0); this latter condi-
tion is not necessary since the initial values ¥,4(0) only
give a transient contribution to F;, Eq. (2.12), which van-
ishes in the large ¢ limit. Under these various homogenei-
ty conditions, we have

du, dU;
Y % _nUu.—-U)). (2.15)
dt dt &b
Hence for large ¢, U;(t)= U () for all i, where
‘2—?=—€U(r)+Wf(U(t))
t ’ ’
+fo[WG(t—t (U (")
+H(t—t")U(t')]dt'+ F(t) (2.16)
and
F()=T()+9 3 G, 5(t)V5(0)
B
(2.17)

+<;fo‘§ﬁ; Goplt —t')Mg(t")dt" .

Hence, the dynamics of a homogeneous network can be
described in terms of a single compartmental model neu-
ron with feedback.
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III. DYNAMICS OF NONLINEAR VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS

The existence of a general analytical expression for the
response function of an arbitrary dendritic tree means
that our functional approach, which reduces N(M +1)
coupled ordinary differential equations to N coupled
integrodifferential equations, is potentially a powerful
technique for studying the dynamics of recurrent com-
partmental networks. In order to explore this further, we
first need to consider some general results concerning the
dynamics of nonlinear Volterra integrodifferential equa-
tions. For a review of Volterra equations see Ref. [15]
and references therein. Another useful reference is Cush-
ing [9]), who analyzes a class of nonlinear
integrodifferential equations arising in population dynam-
ics.

Consider the nonlinear Volterra integrodifferential
equation

dx t , ,

= = i+ f,OB(t—t )g(x(¢"))ds
where x€ER" f,g:R"—>R" are differentiable, bounded
functions and B is an n X n matrix of real functions con-
tinuous on [0, ). Moreover, B;; €L'[0, ) for all i, Js
that is

fwlB,](t)'dt< 0 .
0

(3.1)

(3.2)

Our approach to analyzing Eq. (3.1) will be the standard
one of linearizing about a solution (or an equilibrium) and
investigating its stability or instability (in the Liapunov
sense). It should always be borne in mind that any stabil-
ity results are in general only local with respect to the
solution being considered.

Generally, one is concerned with finding a solution x(¢)
of (3.1) for ¢ >0 given a continuous initial function x%)
defined over the interval I =[¢,,0],#, <0. Note that the
compartmental model constructed in Sec. II corresponds
to the special case t,=0, so that we would only need to
specify the initial value x(0)=x°. Let R* and R~ denote
the positive and negative reals. If X(¢) is a solution of
(3.1) on R then it is called Liapunov stable if given any
€>0 there exists a corresponding §=86(g)>0 such that
|%;(£)—x2(¢)| <8 for all t €T and i implies that any solu-
tion of (3.1) satisfying x;(t)=x2(t) for tEI exists and
|%;(£)—x;(¢)] <8 for all tER™ and i. If, in addition,
there exists a constant 8, such that |%;(z)—x(¢)| <8, for
all t€1 and i implies |%,(¢)—x;(t)| >0 as t— o, then
R(1) is said to be asymptotically stable. In the following
we shall restrict our discussion to the case ¢, =0.

Suppose that there exists an equilibrium x* of Eq. (3.1),
which satisfies

f(x*)=g(x*)fO”B(t')d:'=g(x*)§(0) , (3.3)

where B(z) is the Laplace transform of B(t). Linearizing
Eq. (3.1) about this equilibrium gives

Y —_ aAy+ Jleu—ryunar, y=x—x*, G4

dt

where



ax

2312
A=Df]Fx.,C(t)=B(t)Dg|x=x. (3.5)
and
af; dg;

J

The linearized system ignores higher order terms in x. In
the more general situation where <0, the linearized
equation also neglects a nonhomogeneous forcing term
involving the initial conditions over the interval I [9].
Since A is a constant matrix and the convolution kernel
C(t) is a continuous # Xn matrix whose elements lie in
L'[0, »), it can be proved [16] that the zero solution of
Eq. (3.4) is asymptotically stable if and only if

A(z)=det[z1,+ A—C(z)]#0 when Rez>0, (3.7)

where C(z) is the Laplace transform of the kernel C and
1, is the n X n unit matrix. Condition (3.7) requires that
no roots of the so called characteristic function A(z)
should lie in the right-hand side of the complex plane.
(This condition generalizes the standard asymptotic sta-
bility result for an autonomous dynamical system
y= — Ay, which requires that all eigenvalues of the ma-
trix A have a positive real part.)

It can also be shown that if the stability condition (3.7)
is met for the linear system, then the zero solution of the
full nonlinear system (3.1) is locally asymptotically stable
[16]. On the other hand, if A(z) has at least one root in
the right-half complex plane (Rez > 0) then the linear sys-
tem (3.5) is unstable [17]. The corresponding instability
of the full nonlinear system (3.1) is harder to establish.
However, we are interested in the special case t,=0, for
which more concrete results concerning instability can be
established, in particular, a version of the Hopf bifurca-
tion theorem (see Sec. V).

IV. LINEAR STABILITY ANALYSIS
OF A COMPARTMENTAL NETWORK

Let us return to the compartmental model neural net-
work constructed in Sec. 2, in particular, the
integrodifferential Eq. (2.9) describing the dynamics of
the somatic membrane potentials U;. Suppose that the
effective input F;, Eq. (2.12), is zero. In other words, as-
sume that there are no external inputs and that the tran-
sient contribution from the initial values V(0) is negligi-
ble. If the term involving the kernel H on the right-hand
side of Eq. (2.9) is ignored (¥, sufficiently small), then
Eq. (2.9) becomes

du,
— = TeU0+ 3 W, f(U;(1)
J

+f0' G(t—t’)% W, f(Ue")) dr',  (@4.1)

which is identical in form to that of Eq. (3.1) with
x;—U,i=1,...,Nand
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[(U)=8U, =3 W, f(U)), gU)=f(U,),
! 4.2)
B, ()=W;G(1) .

The particular functions f; and g; of Eq. (4.2) satisfy
f:(0)=g;(0)=0 so that one solution to (4.1) is the zero
solution U(¢)=0. For sake of concreteness, we shall con-
sider linearization about this zero solution. The charac-
teristic function is given by

Alz)=det[(z + O, —kW —kWG(2)],
where f'(0)=x« and G(z) is obtained from Eq. (2.11),

(4.3)

G(2)=73 wBGaOB(Z) . (4.4)
B

If the H term is included on the right-hand side of Eq.

(4.1) then the characteristic function is modified such that

z+¢€is replaced by z +€— H(z2).

Equations (4.3) and (4.4) show how the stability of the
network depends on the interneuron connection weights
Wi, W,-j, the distribution of inputs across the compart-
ments of each neuron as specified by the w,, and the
internal structure of the individual neurons as represent-

ed by the Laplace transformed response function G, B

This in turn highlights the usefulness of the construction
of the compartmental response function developed by
Bressloff and Taylor [3]. For using Eq. (2.14) and the fact
that the Laplace transformation is a linear operation, we
can determine G, 03(2) for an arbitrary tree in terms of a

linear sum involving the Laplace transformed response
function of a uniform, infinite dendritic chain. The latter
can be calculated explicitly using properties of the
modified Bessel function [Eq. (2.13)]. The result is [6]

}\_(z)[a“ﬁ\

GO(z)= 1 A2y 4.5
ap(Z Y A (2)—A_(2) @)
with
(z +¢€) ’( +€) 2
z+e z+e
Ay(z) 2y 2y 1 } . (4.6)

In order to simplify the analysis, we shall assume that
there is no direct input stimulation of the soma, that is,
W,-j =0. Then we can proceed by diagonalizing the con-
nection matrix W to obtain the set of characteristic equa-
tions

z+€—kW;G(z2)=0, 4.7

where W,,i =1,...,N, is an eigenvalue of W. The zero
solution is (locally) asymptotically stable if and only if for
each eigenvalue W, there are no solutions to Eq. (4.7)
that lie in the right-half complex plane. A necessary con-
dition for asymptotic stability is expressed by the follow-
ing theorem (cf. Ref. [9]).

Theorem 1: The zero solution is (locally) asymptotically
stable if

k|W;| <€/G(0), i=1,...,N . 4.8)
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Proof: Since G (t)EL [0, ), the Laplace transform G (z)
exists for Rez >0 such that G(z)<G(0). Suppose that
Eq. (4.8) holds. Then |z+€/2€>«|W;|G(0)
> |kW,;G(z)| for Rez>0, and i =1, ..., N which implies
that A(z) cannot vanish for Rez >0, i.e., there are no
roots in the right-half complex plane. Hence, the system
is asymptotically stable about the zero solution.

In the case of a real eigenvalues W, when W increases
beyond the positive value £€/kG(0) a real root crosses the
imaginary axis leading to a destabilization of the zero
solution (via a pitchfork bifurcation). For if
kW>€/G(0), then A(0)<0, whereas A(x)—c as
x — o,x real [since G(z) is bounded for Rez >0]. This
means that there exists a positive real root of A(z) and
thus the system is unstable.

We are interested in determining the conditions for
marginal stability in which a pair of complex roots tiw
cross the imaginary axis, which is a prerequisite for a
Hopf bifurcation. It is useful to write the characteristic
Eq. (4.7) for pure imaginary roots and a given complex ei-
genvalue W=W'+iW" in the form

io+E—x(W'+iW") [ “e TG (1)dt =0, w real . (4.9)

Equating real and imaginary parts of Eq. (4.9) then yields
(after some simple algebra)

W'=k"[6C(0)—0S(0)]/[C(w)*+S(0)],

W"=K_1[€S(w)+coC(co)]/[C(co)2+S(co)2] ,
with
S(w)= [ “sin(on)G (1)dt
0

(4.10)

- @.11)
Clw)= [ “cos@n)G (1)dr .

By definition, C(w)=ReG(iw) and S (w)=—ImG(iw).
The linear stability analysis can now be developed
along similar lines to that of Marcus and Westervelt [10].
For example, the stability region in the complex W plane
is obtained by finding for each angle 6=tan~ {(W"'/W")
the solution @ of Eq. (4.10) corresponding to the smallest
value of |W|. Other roots of (4.10) produce larger values
of | W], which lie outside the stability region defined by w.
(The existence of such a region is ensured by theorem 1.)
To illustrate the basic idea we shall determine the stabili-
ty region for the two generic kernels (Cushing, 1977) (a)
G(t)=T 'exp(—t/T) and (b) G(:)=T *texp(—t/T).
The first kernel qualitatively represents a “weak’ delay in
the sense that the maximum response at time ¢ is due to
the current input stimulation. On the other hand, the
second kernel qualitatively represents a “strong” delay
since the maximum response at time ¢ is due to an input
stimulation at a previous time ¢ — 7T, i.e., the maximum of
the response curve occurs at ¢t =T. For these so called
generic kernels one can obtain explicit solutions to Eq.
(4.10). Moreover, although they are not themselves com-
partmental response functions they do capture the quali-
tative behavior of the latter. This point is illustrated in
Fig. 2 where the response function G () of a uniform,
infinite dendritic chain [Eq. (2.13)] is plotted for a range
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FIG. 2. Response function G{X)(¢) of an infinite, uniform den-

dritic chain as a function of ¢ (in units of ¥ ~!) with e=1.1y for
various values of the separation a.

of values of the separation |a|. We see that the a=0
curve corresponds to a weak delay, whereas the response
curves for |a|>0 correspond to strong delays with the
time of maximum response T increasing with |a/.

(a) Weak delay. Substitution of G(t)=T ~'exp(—t/T)
into Eq. (4.11) gives

oT 1

Sw=—2L _ clo)=
= Tren €@

= 4.12)
1+ (oT)?
From Egs. (4.10) and (4.12), we find that the boundary

curve of the stability region is given by the parabola (Fig.
3)

—p T(KW”)2

(1+€T)?
and the corresponding value of the imaginary root is
o=W"/(1+€T). It follows that for real eigenvalues

(W' =0) there are no pure imaginary roots of the charac-
teristic equation (4.9). Thus, for a connection matrix W

kW 4.13)

ImW
10

weak delay

strong delay

ReW

-10

FIG. 3. Stability region in complex W plane of the origin for
a recurrent network with generic delay kernels, where W is an
eigenvalue of the interneuron connection matrix W. For a weak
delay kernel, the stability region is open with the boundary
curve given by a parabola. On the other hand, the stability re-
gion is closed in the strong delay case with the boundary curve
crossing the real axis in the negative half plane at a T-dependent
value W~. This is shown for various values of the delay T with
the delay rate € and gain x both set to unity. All boundary
curves meet on the positive half of the real axis at the same
point W*=¢/k=1.
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that only has real roots (e.g., a symmetric matrix), desta-
bilization of the zero solution occurs when the largest
positive eigenvalue increases beyond the value €/k, and
this corresponds to a real root of the characteristic equa-
tion crossing the imaginary axis. Hence, oscillations can-
not occur via a Hopf bifurcation.

(b)  Strong  delay. Substitution of  G(¢)
=T 2t exp(—t/T) into Eq. (4.11) gives
272
S(m)=ﬁ“a2—;ﬁ;, C(m)=[—11T_(—:—)}%? . (414)
The solution of Eq. (4.10) is
kW'=8(1—0*T?)—2a°T ,
kW' =280T +o(1—a’T?) . (4.15)

Equation (4.15) defines a parametric curve in the complex
W plane, and the boundary of the stability region is the
closed portion of this curve as shown in Fig. 3 for a range
of delays T. Since the stability region closes in the left-
half plane, it is now possible for the origin to lose stability
when the largest negative eigenvalue crosses the bound-
ary, even when this eigenvalue is real. Whether or not
this leads to a Hopf bifurcation can then be explored us-
ing the analysis of Sec. 5. Note from Eq. (4.15) that the
points of destabilization on the positive and negative real
W axis are given, respectively, by W' =£8/k and
W~ =—(46+2T " '+26’T)/k. Thus, W' is indepen-
dent of the delay T, whereas W~ has the T dependence
shown in Fig. 4. The minimum value of W™ occurs at
T =1/€. There is consequently a major difference in the
behavior of the stability region as a function of the delay
T compared to the case of discrete delays analyzed in
Ref. [10]. In the latter problem, the stability region
shrinks as the discrete delay T increases approaching a
circle of radius proportional to 1/« in the limit T — .
On the other hand, in the continuous case considered
here the stability region shrinks as T increases until it
reaches the value 1/€, and thereafter increases with T.

To illustrate how the results for the generic delay ker-
nel relate to those obtained using a compartmental
response function, we shall determine the point of inter-
section W~ of the stability region boundary with the neg-
ative real axis for an infinite dendritic chain of identical
compartments labeled a=0,+1,+2, ... (Sec. II). Let the

FIG. 4. Plot of the intercept W~ of the stability region of the
strong generic delay kernel as a function of the delay 7. Vari-
ous values of € are considered with k=1. The minimum value
of W~ occurs at T =1/¢.
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dendritic compartment immediately adjoining the soma
be a;=0 and assume for simplicity that wgz=6g, for
some L. Equation (2.11) then implies that G (1)=G’} (¢).
Setting W'’ =0 in Eq. (4.10) shows that

W =¢/kC(w), (4.16)

where w is the smallest nonzero solution (assuming it ex-
ists) to the equation

Sy ()

CL ( w ) ’

0=—8T,(0), T (0)= (4.17)

The dependence on the separation L has been made expli-
cit. Equations (4.5), (4.6), and (4.14) imply that

1 [etio—V(etio)—4y*]t

Crlw)—iS;(0)= —_—
- T Vietior—ay

(4.18)

An iterative equation for T () can be obtained using the
identity

Vie+iw)—4y*=A4 +iB , (4.19)
where
A= @+ VTP
B =1[—f()+V (0P +4o’e]
flw)=e*—4y>—w?. (4.20

First, substituting Eq. (4.19) into (4.18) for L =0 gives
B

= 4.21

Ty(w) 4 4.21)
Second, writing Eq. (4.18) for L > 1 in the form

=[(e— A)+i(0—B)][C, _|(@)—iS; _(w)] (4.22)

and equating real and imaginary parts leads to the result

. 4.23
(=BT, (@)+e—A 4.23)

TL(CL)):

The point of intersection W~ can now be obtained for
a range of L values using equations (4.16), (4.17), (4.20),
(4.21), and (4.23). The results are displayed in Fig. 5 for
£=1=x. As expected, W~ does not exist for L =0 since
G (1) is equivalent to a weak delay. On the other hand,
for L >0, G} (¢) is equivalent to a strong delay with the
time of maximum response a monotonically increasing
function of the separation L (Fig. 2). Thus comparison of
Figs. 4 and 5 shows that the compartmental response
function exhibits the same qualitative behavior as the
generic kernel.
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W x
50
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FIG. 5. Plot of the intercept W™ of the stability region of
compartmental model neural network with kernel G{J(¢) as a

function of the separation L.

V. ONSET OF OSCILLATIONS
IN A COMPARTMENTAL MODEL NETWORK

Let p be some real parameter of the dynamical system
described by Eq. (4.1). For example, u could correspond
to one of the weights of the network or to a membrane
potential time constant. It may happen that the zero
solution (or some other equilibrium) is stable for u <p,,
but that as u increases above ug,, a pair of zeros of the
characteristic function A(z) cross the imaginary axis re-
sulting in a destabilization of the equilibrium for u > p,,.
Using the transfer function approach of Allwright [12],
we shall derive conditions under which this destabiliza-
tion is associated with the appearance or disappearance
of a periodic solution via a Hopf bifurcation. Note that
there are two distinct scenarios here: either the periodic
solutions are stable and exist when the equilibrium is un-
stable (supercritical Hopf bifurcation), or the periodic
solutions are unstable and exist when the equilibrium is
stable (subcritical Hopf bifurcation).

In order to proceed, we first need to express Eq. (4.1) in
a particular form. Define a vector U(z) €RY according to
the integral equation

dt

t ’ ’ ’
0= [t~ ); W, f(U(e')dt’ (5.1)
so that Eq. (4.1) becomes
—==—8U;(0)+3 W, f(U;(N+D0i(r), (5.2)
J

which can be formally integrated to yield

U= [ e = O+ WU [dr' . (5.3)
j

[Since £> 0, we can drop the resulting transient contribu-
tion to Eq. (5.3) involving the initial condition U(0).]
Thus, the N-dimensional Volterra integrodifferential
equation of (4.1) is equivalent to a 2N-dimensional Volter-
ra integral equation of the second kind obtained by com-
bining Egs. (5.1) and (5.3) to give

W= [ 9 — ) F W Nar (5.4)

2315
with
_ U(z) . e 1
\I’(t)_ ﬁ(t) ’ g(t)_ B(t) 0 ’
(5.5)
Hp)= g(u)
W= 19—su)+eu |’

and B, f,g defined in Eq. (4.2). Equation (5.4), or its La-
place transform W(z)=9(z).L[F(¥)](z) can be represent-
ed by the simple feedback system of Fig. 6. This consists
of a linear transfer function & and nonlinear feedback F.
The onset of oscillations in feedback systems of this form
can be analyzed using the Hopf bifurcation theorem of
Allwright [12]. We shall present the general theorem and
then discuss it for ¢ and 7 satisfying Eq. (5.5), which cor-
responds to the particular case of a system described by
the nonlinear Volterra integrodifferential Eq. (4.1).

Hopf Bifurcation theorem [12]: Consider an equation
of the form (5.4) with WER™ such that the mapping
FR™—R™ is parametrized by p and is C* jointly with
respect to ¥ and u. (One can weaken this differentiability
requirement.) Let G(z), which is the Laplace transform
of 9(t), be C! with respect to (u,z). Suppose that there
is an equilibrium W=W* where W*=8(0)F(¥*).
Define the Jacobian J=D3F(¥*), the tensors
K=D>F#¥*),L=D>F(¥*), and the characteristic func-
tion E(z)=det[1,, —9(2)J]. Assume that the following
conditions hold.

(a) The characteristic function =(z) has a single pair of
zeros that cross the imaginary axis with values *iw, at
uw=po. More precisely, let u and v be left and right
eigenvectors associated with the local continuation of the
eigenvalue iw, that is, [1,,—9(z)J]lv=A(z)v and
u’[1,, — 9(z)J ]=A(z)u’ with A(iwy)=0. Then we assume
that u'S"(z)Jv#0 at (uy,iwg), where the prime indicates
differentiation with respect to z, so that there is a local C'
solution % of =(£)=0, reducing to iw, at p,.

(b) At the bifurcation point p=p, Z(0)7=0. This en-
sures that the equilibrium is locally C' in p.

(c) There are no bifurcations at any integer multiples of
iwg, that is, Z(ipw,)7O0 for all integers p = 2.

(d) The local solution 2 and curvature o [defined below
by Eq. (5.6)] satisfy

daz

R
ed,u

#0 at puy;, Re(o )70 at pg,0, .

Then for pu=p,+x8%, where y==+1 and 5>0
sufficiently small, there are nonconstant periodic solu-
tions of (5.4) of the form

2
Y(1)=¥*+Re 3 a;e*'+0(8),
k=0

with
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Re[o]
w=a)0+)(92+0(83) ,

____Re[d?/du]
X=sen P ]

a,=0%vy,vo=FH (0K (Ve V)/4 ,
a,=0v,
a,=0%,, v,=#HQ2io)K(vev)/4,

and

FH(z)=[1,,—9(2)I]'19(z) .

[Here “®” is the tensor product so that, for example,
K(u®v) is a vector with components 3 ;; K u;vi.]
Furthermore, if we assume that all other zeros of Z(z)
have negative real parts bounded uniformly away from
zero in some neighborhood of pu, and that
Re(d% /dp) >0, then W* is locally stable for u <u, and
unstable for p > p,. It follows that y >0 or Re(o)>0isa
sufficient condition for a supercritical Hopf bifurcation in
which a stable limit cycle appears as u increases beyond
Ho-

We have yet to write down the explicit expression for
the curvature o. This is given by

uw'SlioN
=— (5.6)
w9 (iw)Iv
with
V=L(veveV)/8+K(vev,+V8v,/2) . (5.7

Note that u and v appearing in Eq. (5.6) are to be evalu-
ated at z =iw, so o is a continuous function of (u,w).
This concludes the statement of the theorem.

We now apply the above Hopf bifurcation theorem to
the nonlinear Volterra integrodifferential equation of
(4.1), which has the block diagram representation of Fig.
6 with convolution kernel § and nonlinear function ¥
satisfying equation (5.5), and m =2N. We linearize about
the zero solution and use f'(0)=k,f"(0)
=0,f"(0)=—2«>. Equations (4.2) and (5.5) imply that
the Laplace transform § and Jacobian J=D F0) have
the matrix form

linear transtform

nonlinearity

FIG. 6. Block diagram representation of a recurrent com-
partmental model network.
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0 (z+&)™1
WG(z) 0

§(z)= , J= (5.8)

’K10
KW 1]’

where each block is an N XN matrix. Moreover, K=0
and the only nonzero components of the tensor
L=D3¥0) are

—_ 3
Lijkl_- 2K Si,jsi,ksi,l y

L= —26W;8,,8,;, iLjkl=1...,N. (59
Equation (5.8) shows that the characteristic function Z(z)
is equivalent to the characteristic function A(z) of Eq.
(4.3), that is, Z(z)=A(z)/(z +€). Equations (5.8) and
(5.9) show that the curvature o takes the explicit form
og=0,/0, with

N N
0, =(io+8) 7' ud, y+Glio) 3 u; yW;D,
i=1 Lj=1

(5.10)
and
N
0'2:_(i(1)+€)42 2 (uiaijvj+N+KuiWijvj)
ij=1
_ N
+KG’(iw) 2 ui+NWijUj s (5.11)
ij=1
where
D= —Kv0,0,/4, D n=—K3 W00, /4 .
J
(5.12)

Note that the linear contribution from the kernel H [Eq.
(2.9)] is easily included in the above analysis by replacing
z+€withz +6—H(z2).

Example (i): To illustrate the application of the Hopf
bifurcation theorem, we shall consider the simple case of
a single neuron with feedback and one dendritic compart-
ment, which also describes the coherent state of a homo-
geneous network (Fig. 7). (Such an example can of course
be studied more simply using planar analysis.) We shall
assume that the feedback excites the somatic compart-
ment and inhibits the dendritic compartment. Moreover,
the two compartments are taken to have the same mem-
brane properties. All external inputs are set to zero. Let
V and U denote, respectively, the dendritic and somatic
membrane potentials. An application of Kirchoff’s law
yields the pair of differential equations [cf. Egs. (2.2) and
(2.3)]

%z-eVerU—Wf(U), £> (5.13)
%=—5U+yV+Wf(U). (5.14)

In this simple system we can reexpress Egs. (5.13) and
(5.14) in the block diagram form of Fig. 6 by direct in-
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N u fv)

FIG. 7. Schematic diagram of a neuron with excitatory feed-
back (W) to the soma and inhibitory feedback (— W) to a single
dendritic compartment. The somatic potential is U and the
dendritic potential is V. Such a system can exhibit oscillatory
behavior via a supercritical Hopf bifurcation.

tegration rather than using the procedure described by
Eq. (5.1 onwards. The result is Eq. (5.4) with

—€&t

_ ) |0 e
\I/(t)_ V(t) > g(t)_ e—gt O ’ ( 1)
5.15
yU—Wf(U)
0=y v wra |

Linearization about the equilibrium (U, ¥)=(0,0) gives
the Jacobian

¥ Yy—«kW O 16
=\ kW ¥ (5.16)
The characteristic function A(z) is
Az)=z +e—kW——L—(y—xW), (5.17)
zte
which has a pair of zeros
Ar=—e+kW 22V (kW /22 +y2—ykW . (5.18)

It follows that the condition of marginal stability with a
pair of imaginary eigenvalues A, =tiaw, is

kW=2¢, e2+yi<yxW . (5.19)

In other words, A(+iw,)=0 when W=2¢/k, where
wo=VykW —e’—y% Note that pure imaginary eigen-
values can only exist if the feedback to the dendritic com-
partment is inhibitory. Assume that W is sufficiently
large so that the second condition of (5.19) is satisfied,
and take the bifurcation parameter to be u= W. The crit-
ical point is then py=2¢/k. For p <p, the equilibrium is
locally asymptotically stable, whereas it is unstable when
B> po-

The main step in the application of the Hopf bifurca-
tion theorem is the determination of the curvature o of
Eq. (5.6). This in turn requires evaluating the Jacobian
J=DF0), the tensors K=D?2F0) and L=D>%0), and
the left and right eigenvectors u(wy),v(w,) of the 2X2
matrix 1—8(iw,)J. One finds that K=0, the nonzero

elements of L are
Liyn=2W, Ly, =—2W (5.20)

and
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(iw0+8)/’}’
1

1

(iwg—e)/y | - O2D

w(wy)= , Vliwg)=

Setting W =2e/k and substituting Eqgs. (5.15), (5.16),
(5.20), and (5.21) into (5.6) yields
ix?
o=—[w3+y2—e*—2icw,] . (5.22)
@o
Hence, Re(o )=2¢ex?> 0, and we conclude that the system
undergoes a supercritical Hopf-bifurcation as W increases
beyond the value 2¢/k. (The other conditions required
by the Hopf bifurcation theorem can be shown to hold.)
We conclude that a compartmental model neuron (or a
homogeneous network) with excitatory feedback to the
soma and inhibitory feedback to the dendrites can under-
go a Hopf bifurcation leading to the formation of a stable
limit cycle.

Example (ii): In the previous example, oscillations
arose as a consequence of the particular pattern of feed-
back across the dendrites and soma. Since there was only
a single dendritic compartment, the resulting convolution
kernels corresponded to the weak delay case, see Eq.
(5.15). Thus, we required nonzero feedback to the soma
(W+0), otherwise oscillations could not occur via a
Hopf bifurcation, (see Fig. 3). For our second example,
we consider a multicompartmental model neuron with
feedback to the dendrites but not to the soma, and use
the Hopf bifurcation theorem to investigate whether or
not oscillatory behavior is induced by the presence of
strong delays. (This corresponds to the situation of mar-
ginal stability at the intersection point W~ of Fig. 3.)
The dynamics of the model neuron is described by Eq.
(2.16) with W =0, and no external inputs F(¢)=0. Again
the H term is neglected for convenience. The dendrites
are represented as a uniform infinite chain of compart-
ments as in the example at the end of Sec. IV with a;=0
and wg=28g,; for some integer L so that G(t)=G)(¢).
Equation (2.16) then has the equivalent form (5.4) with

0 (z+€)!
yWG(z) 0

The characteristic function is A(z)=z +€&—kWG(z),
which was analyzed in Sec. IV. In particular, for L+#0
the presence of a strong delay kernel means that there ex-
ists a weight value W~ of the form (4.16) for which
A(*iwy)=0, where w, is the smallest nonzero solution to
Eq. (4.17). The condition for a supercritical Hopf bifur-
cation is Reo >0 where

_ «*G(iw,)
4G (iw,)

k 0
01

9(z)= . (5.23)

b

(5.24)
Using the definitions of C(®) and S () in Eq. (4.11), we
have that

ds (o) _;4C(w)
do do

(5.25)

Glin)=C(w)—iS(0), G'lin)=—

and the condition Reo > 0 reduces to
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T(w) (
20} /
(oY) __rf/
o
m 5
—20} 7 —

FIG. 8. Plot of the function T () for a compartmental mod-
el neuron with feedback to the Lth dendritic compartment and
delay kernel G{(1),L =4. Graph shows that dT/dw > 0 every-
where except at a finite set of singularities. The intercept w, of
T (w) with the straight line determines the pair of pure imagi-
nary roots *tiw, of the resulting characteristic equation at the
point of marginal stability W .

dT (w) — Clw)S'(0)—S(w)C'(w)
dow Clw)

>0 at w=w, .

(5.26)

By plotting T (@) as a function of w one finds that for any
L >0, the smallest nonzero solution to Eq. (4.17) occurs
at a point where dT (®)/dw >0 (e.g., see Fig. 8). This is
also seen explicitly in the case of the generic strong delay
kernel G(t)=T *texp(—t/T) since T(w)
=20T/(1—w*T?) and dT (») /d» >0 for all 071 /T.

We conclude that the presence of strong delays arising
from the passive membrane properties of a neuron’s den-
dritic tree system can lead to the onset of oscillations in a
neuron with inhibitory dendritic feedback and zero
somatic feedback. An analogous result holds at the net-
work level when the interneuron connection weights are
symmetric. (In the network case, the feedback need not
be purely inhibitory.) The point of marginal stability for
oscillation onset will occur when the most negative (real)
eigenvalue of the connection weight matrix (the bifurca-
tion parameter) takes on the value W~ while the most
positive eigenvalue is below the positive intercept W ™.
Note that this result is not inconsistent with the global
analysis of Ref. [11], since the construction of a Liapunov
functional for a symmetric network is carried out in Ref.
[11] using a weak delay kernel.

VI. DISCUSSION

In summary, we have developed an integral equation
approach for analyzing the dynamics of recurrent com-
partmental model neural networks, which allows the
effects of dendritic structure to be incorporated in a com-
pact and analytically tractable manner. The resulting
kernels are generated from the single neuron membrane
potential response function, which may be calculated for
arbitrary dendritic tree topologies. Using linear stability
analysis and a version of the Hopf bifurcation theorem,
we have shown that an equilibrium of a compartmental
model network can destabilize leading to the onset of a
stable limit cycle. In the case of weak delay kernels, this
only occurs when the bifurcation parameter is a complex
eigenvalue of the interneuron connection weight matrix
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W (assuming that W=0). On the other hand, a Hopf bi-
furcation can arise with respect to variation of a real ei-
genvalue (as necessarily occurs when the weight matrix is
symmetric) in the presence of strong delay kernels. The
stability region of an equilibrium is found to shrink as the
effective delay T increases reaching a minimum at some
finite value of T. Thereafter, the stability region grows
with T. This contrasts with the case of a discrete delay
where the equilibrium becomes increasingly less stable as
the delay increases [10].

There are a number of possible extensions of this work
which include the following.

(i) To carry out a more detailed analysis of the depen-
dence of compartmental model network dynamics on the
pattern of interneuron connection weights and internal
dendritic structure. (The latter includes both the topolo-
gy of the dendritic tree and the various time constants of
the system.) For example, the stability of particular net-
work configurations can be explored along similar lines to
the discrete delay case by calculating the eigenvalue spec-
trum of the weight matrix [10].

(ii) In this paper, we considered an analog model that
takes the output of each neuron to be a sigmoidal func-
tion of the somatic membrane potential U. An alterna-
tive choice is to take an integrate-and-fire model in which
the somatic membrane potential resets to some level U
each time a neuron fires [18]. That is, U(tT)=U when-
ever U(t)=h, where h is some threshold. The output of
each neuron is now in the form of a sequence of action
potential spikes (idealized as Dirac 6 functions), which is
specified by the interspike time intervals. Recently, we
have used integral equation techniques to analyze the dy-
namics of a single compartmental model integrate-and-
fire neuron and, in particular, to determine how reset
feeds back on to the dendrites [19]. We are currently ex-
tending this analysis to the network level.

(iii) The study of the onset of oscillations in compart-
mental model neural networks is of particular interest
within the context of collective synchronization. In-
spired by certain neurophysiological experiments [20,21],
the formation of coherent states in which spatially
separated groups of oscillating neurons are phase syn-
chronized has been suggested as a possible mechanism for
feature linking in pattern recognition tasks. However,
most analytical models of such processes neglect the
internal dendritic structure of neurons, see for example
Refs. [22-24]. The integral equation techniques present-
ed here could be used to investigate synchronization in
networks consisting of more realistic, compartmental
model neurons.

(iv) In the compartmental model presented in Sec. II,
we neglected the fact that changes in the membrane po-
tential ¥, of a compartment induced by a synaptic input
depends on the size of the deviation of V, from some
fixed resting potential. If this so called shunting effect is
included then there are additional nonlinear terms on the
right-hand side of Eq. (2.2) of the form V,f(U(1)).
Thus, Eq. (2.2) is no longer linear in the V,, which makes
their elimination through integration much more compli-
cated. We are currently looking at ways to tackle this
problem.
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